SELF-SIMILAR SOLUTIONS OF THREE-DIMENSIONAL
LAMINAR MAGNETOHYDRODYNAMIC BOUNDARY-LAYER EQUATIONS

G. V., Filippov and V. G. Shakhov

Self-similar solutions of three-dimensional boundary-layer eguations of an incompres-
sible fluid in ordinary hydrodynamics were considered in {1-3] et al. The present work
looks for self-similar solutions of three-dimensional magnetohydrodynamlc boundary -
layer equations.

1. Fundamental Equations. The task is to determine a system of differential equations and condi-
tions for "self-similar' motions of an incompressible gas in arbitrary orthogonal curvilinear coordinates
T, 0, and &.

The surface over which the boundary layer flows is defined by the condition ¢{=0 where ¢ is the dis-
tance measured along the normal to this surface. Two families of coordinate curves T=const and ¢ =const,
orthogonal to each other, are situated on the surface ¢=0.

The element of length ds in this coordinate system is defined by the equation
ds? = hy2dv® 4 h2d6% - di? (1.1)

where hy and h, are the Lame coefficients.

Usually it is assumed that h; and hy are functions of 7 and 6 only in the boundary layer. This assump-
tion is valid if the curvature of the surface does not vary sharply and if the local thickness of the boundary-
layer is small compared with the principle radius of curvature of the surface.

The equations of motion for an incompressible gas in the boundary layer when the magnetic field in-
duced by the electric currents in the fluid are negligibly small compared with the applied magnetic field
have the form [4]. .

u 6U+IZ ﬁ+w c %luv+%2u2=_5};g§+ 6;22 G—IZC'EU 1.3)
2 (o) -+ 55 () + 5 (ko) = 0 (1.4
%1:__/;1%%’;_2, e = — o (1.5)
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Here nq and n, are the geodesic curvatures of the lines 7=const and é=const, and u, v, and w are
the velocity components in the directions of the coordinate axes 7, 6, and ¢, respectively.

The boundary conditions have the form

u=v=w=0 for { =0, uw—>U, 2>V a {—>o0,

(1.6)

The quantities 9p/87 and 9p/968 in (1.2) and (1.3) are determined by the flow at the boundary-layer
edge

Uou vV U , 1

T —ms——'%zUVT”lVZ__pTW“mU 1.7)

U v o,V B 1 op ,

i e P M (1.8)
(m=0Bs/p)«

Using (1.7) and (1.8) to eliminate the pressure from system (1.2)-(1.4) we obtain

u du v Ou du 9

—E—g%—+7lz—a—6-—}—w—7———xguv+%1v ==
U oUu , v U

= T —x,UV +n11/2+v6€2 m(u— U) (1.9)

u v | v

v 9
TFTK?&%—w——E—uluu—,‘—wzu =

U v dV_ P _ 1.10
=gt U+ U2+ v a;z mw—"V) (1.10)
0(h2u) +a(h1p) a(hlszw) 0. (1.11)

For self-similar fluid motions the respective velocity-component profiles at different points of the
surface differ in scale only. Here the velocities of the self-similar boundary layer may be represented
in the form

u (v, 8,8) = U (v, 8) & (n) (n= L a>), (1.12)

(1.13)
v(z, 8,5 =V(r, 8) D" (n).

Here @& () and D () are some functions of the variable n and g (7, 8) is some function of the coordi-
nates 7 and 6. When (1.86) is taken into account it follows from (1.11) that

— V'~ [ (haU) alng ,
w= hihog [ e O+ kU (n®’— )

_|_ [/} (hlV)D + I’l V alng (nD' )] (]..14:)

When (1.12)-(1,14) are inserted in (1.10) it may be transformed to the following

D7 4 (Cy —Cs— Cr) D" + (Cy—Cq — Cg) DD" 4 (Cs—Co)(D'D’ — 1)

—C (@7 = 1) —Cpo(D? — 1) —Cyy (D"~ 1) =0, (1.15)
D" 4-(C3 — Cs — C;) DD - (€4 — Cg — Cg) DD" 1 (C; — Cy) (®'D'—1)
—Cy(@? — 1) — C(D? —1) — Cy (D" — 1) =0, (1.16)
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Here

c.o— A _ Vv o U_w

1= FgE ot "7 Uhg? 96, Cyz= Vigg? ot '

4 v C_Ualng C_Vﬁlng

P g B TP gt v 0 TR gt T Hd

®U UV w2 #ol2
C7=—g—12“(‘, Cs: ;2 3, CQ: 'I;—gz‘, C]_o:—UEg—Z,. Cu:é%-. (1-17)
The boundary conditions for (1.15) and (1.186) are

O=D=0"=D"=0 for 5=0, ' -4, D—1 for n-o00, 1.18)

For each concrete coordinate system (7, 6, £) hy and hy and consequently n; and %, are known func-
tions. Equation (1.17) may then be investigated and possible distributions of the functions U (7, 4),
V (1, 8), g (r, 6) and m (7, &) for self-similar solutions obtained.

Since hy=h, =1 and »;=w,=0 for a Cartesian coordinate system it follows from (1.15)-(1.17) (making
the substitution Tt =xand ¢ =z) that

D" — C " £ (€ —C5) DD + (Cy — Cg) DD — C,D'D — Cy @

+C +C +Cu =0, 1.19)
D" — C,D"* 4 (Cy — Cs) DD" 4 (€, — C5)@D" — C,D'®" — Cyy D’
+Cs + Cs4Cy =0, (1.20)
where 1 o v oU U oav 1 v
G=ga G=gga G=vpa G-Fa
U al )
Co=L e =T 2RE ¢y =L (1.21)

Boundary conditions for & and D have the form of (1.18).

System (1.19) and (1.20) will be a system of ordinary differential equations in 7 (the "self-similar-
ity" condition) if C; (i=1,2,...,6,11) are constants.

When Cy;=0 Equations (1.19)-(1.21) describe self-similar solutions in the absence of a magnetic
field [1-3]. It follows from (1.21) that if the distributions of U, V, and g are known then the distribution
of m may be found directly from (1.21)
m = Cllgz' (1 022)

As explained in [1-3] four ways can be given for specifying the functions U, V, g, and m:

first
U= aemwit, V=bewsl, gt=lh=5 L= s (1.23)
second
U = azrgi-t, V =barizl, g¥= Em;l— = 07,' = %?'—Z— ; (1.24)
third
U . n 7 1 5 m clU 1
= az™, V = bat, g == (1.25)
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fourth

U = gem, V == belx, g? = 0_”1.— =cl,
L

a, b, ¢, {, n==const. (1.26)

A symmetrical exchange of the independent variables leads to four additional variants.

It was shown in {3] that the ways of specifying the functions U and V given above are not acceptable
for all values of the constants a,b, I, and n. The generalization to the constants ¢ and Cy; when the func-
tion m is specified is obvious.

1t should be noted that Equations (1.19)-(1.21) are also written in a similar manner in a skew co-
ordinate system [2], in which, consequently, all that has been said above remains valid.

2. Conditions for self-similarity of the temperature profiles. These equations may be determined
from the boundary-layer energy equation in magnetohydrodynamics, on the assumption that the thermo-
dynamic properties of the fluid are constant [4]

Here T is the temperature in the boundary layer; cp is the specific heat at constant presgsure; k is
the thermal conductivity.

The self-gimilarity condition has the form [2]

T—T, T-—T,
() = =T, = T. (T, =Ty —Ty). (2.2)

Here T, is the temperature of the onflowing stream; Ty, (x, z} is the temperature of the surface.
Inserting (1.12)~-(1.14) and (2.2) in (2.1) we obtain

8" — 10’8 — Cy3D'0 + P (Cy— Cs) ®Y' -+ P (Cy— () DO’ -

+ Coa®@" + Cy5D" + €y (C1a®" + Cy5D") = 0, 2.3)
PU dlnT, PV AT, _pUe o
CIZ = 'g—z‘ ED) ’ 613 = "Ef 3z 1 014 = cpT' ] C15 = cpT" (2'4)
Here P is the Prandtl number.
The boundary conditions for € have the form
=1 for 1=0; 8 -0 for n=-c0, (2.5)

In order for (2.3) to be an ordinary differential equation the coefficients Cy, —Cy5 must be constants.
With this condition it follows from comparison of the coefficients Cy and Cy; that U is proportional to V,
i.e., the stream lines of the main flow are straight. This fact strongly limits the class of functions U and
V as well as m for which self-similar temperature profiles are possible., A similar result is obtained in
2] for m=0.

If we follow [2] and do not allow for viscous and Joule neating, the restrictions imposed by the coef-
ficients Cy and C;5 may be neglected and all the conclusions drawn in [2] also remain valid in the case under
consideration,

Thus if we assume that T,=const, then Eq. (2.3) assumes the form [2]

0" + P (C; — C®O P (C, — Ce)DO" = 0. (2.6)
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By making use of (2.5) we may represent (2.6) by quadratures
0@ =1—"0m/% (),

QLo R

o (m) = \exp{— P[(C,— Co) O aR+ (€2 — Co) { D dB |} da. @.7)
) 0 o

The solutions for the variables Tx corresponding to the ways 1-4 of representing the functions U, V,
and g have the following form from (2.4) (the conditions from Cy and Cy5 are neglected),

T, =te™ s  (first), (2.8)

T,=1tx'z*  (second), (2.9)
T, = tae*  (third), (2.10)
T, == ter*e  (fourth), (2.11)

(t, r, s==const),

3. Acceptable "Self-similar" Boundary Layers. Motion in three-dimensional boundary layers with
external velocity components U and V and a parameter m of the type of (1.23)-(1.26) are described by the
differential equations (1.19) and (1.20). In this case the functions U, V, and m should satisfy Euler's
equations (1.7) and (1.8). They should be such that pressure p is uniquely specified from (1.7) and (1.8).

Asg in ordinary hydrodynamics [3] this fact restricts the choice of constants a, b, ¢, Cy;. L, and n,
and in doing so considerably reduces the number of acceptable ways of specifying the functions U, V, and
m so that the motion in the boundary layer will be self-similar.

We give a list of acceptable funetions U (x, z), V (x, z) and m (x, z). for which motion in the boundary
layer is self-similar and which also satisfy Euler's equations (1.7) and (1.8); expressions for P=-p (x, z)/p
corresponding to each particular case (for brevity we set d=c/C7) are given in parentheses on the following
lines:

U = azrz=d) V= qa"1g1-0nd) = adgr-1g—(+d)

(P = const); (3.1)
U=az", V=>bze"™, m=ada™1
(P = a‘l%(z 2r+ab(1—n-+d)z -+ const>; (3.2)
U=uaz", V=>br? m=adz™?
(P = a? n;;d 2+ const); (3.3)
U=az, V=0bz, m=ad
P:azi_;d:czﬁ— b(bi_ad) z2+const>; (3.4)
U=azr, V=all—n+d)]a+z, m=adz?
(P = g n_;%ﬂ PR const) ; (3.5)
U=azzl, V=2a iti 2", m==adz™!
D +d) L, ,
(P = g2 ot + const), (3.6)
Us=aqae™, V=-—amn-+d)ez, m=ade™=
( 2P+ d o
P = a? e const); (3.7)
U =ae™, V=>bers  m=ade=
(P = a2 —%ﬁ enx 4. g (ade*™ —bn)z + const): (3.8)
U =ae~, V=>0bed, m=ade™
(P g nj;b d ezmc + abdenx (enx—e—dx) 2 const), (3 09)
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This list does not include the velocity distributions when U or V are identically equal to zero. Simi-
lar expressions to those above may be written down for the velocities when independent variables are inter-
changed symmetrically. ¥ should be remarked that this list contains three-dimensional boundary layers
{3.7)-(3.9) which have certain definite (non-zero) values of U and V in the initial cross-section.

These essentially require the problem of continuing a boundary layer from one region to another to
be formulated and solved. These cases are not considered below.

4. Properties of Three-Dimensional "Self-Similar” Boundary Layers. We shall outline briefly the
essential features of three-dimensional motions described by the functions (3.1)-(3.6)

. n 4 o\ n 1
1°, U:a(;) ;i’ V;al<i> % m:ad(i) ;;& (4;1-1)

z z

Both pressure gradients are zero (dp/dx=dp/dz=0)and the pressure is constant on the whole surface
over which the flow is taking place.

The stream lines in the external flow are straight lines passing through the coordinate origin just as
in ordinary hydrodynamics [3].

The differential equations {1.19) and (1.20) assume the form

Q" £ Yofn +1) QPO 3152 —n —d) DO — ad” 4 (n + AD'D — 4D’ = 0, (4.1.2)
DI My (n 4+ YOD 12 (2 0 — DD’ 5 (n 4 d—1)D"*—(n — D'’ — dD’ =0, (4.1.3)

If we set & () =D (1) then the system of equations (4.1.2) and (4.1.3) is satisfied just as in ordinary
hydrodynamics [3]. We have from (4.1.2) and (4.1, 3)

D 43, DD 4 4P’ (D — §) = 0. (4.1.4)
Making the change of variables
OM=V9@E), n=V%HE, d=%4 4.1.5)
we have the equation
P A 99" - dig’ (@0 — 1) =0 (4.1.6)
with the boundary conditions
¢g=¢'=0 for §=0, ¢ -=1for &-> cc. (4.1.7)

When dy=0 Eq. (4.1.6) with the boundary conditions (4.1.7) describes the problem of longitudinal
flow over a plate; this was solved by Blasius.

When d; < 1 we may assume a solution of the form
Q= Qg + &P + dBQ, + ..., 4.1.8)
which gives

90" oy = 0,

91 PP + o’ B+ 00’ (g0’ — 1) = O, 4.1.9)
with the boundary conditions
Po=Q == ..=@ o=@, =@, =..=0 for§ =0,
Po—1, @' =0 (G>1) as E— oo, (4.1.10)
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The first equation of (4.1.9) is non-linear. It was solved by Blasius with the boundary conditions
(4.1.10). The following equations are linear:

2°. U= aqz", V= bz"7, m = adz™1, 4.2.1)
The stream lines of the external flow are:
either a family of parabolas (when n = 1)
_ b {1-n)
Z—z-‘—-——a(1-—n)$2 ™ L const, (4.2.92)
or a family of logarithmic lines (for n=1)
z=b/a In =z - const, (4.2.3)

This corresponds exactly to ordinary hydrodynamics [2].

In the case under consideration equations (1.19) and (1.20) describing the boundary layer assume the
form

o + 1/2 (n + 1) DD’ — n ((D/z . 1) —d ((I)' — ,1) =0, (4.2.4)
D" Yo fn + 1)DPD 4+ (n —AYDP'D — 1) —d (D' — 1) = 0.
(4.2.5)
If we introduce the functions
Om=V2/r+DeE, Dm=V2/n+Dha, n=VJati, 4.2.6)
then (4.2.4) and (4.2.5) reduce to the form
O Lo =Py (@7 — 1) +Ba (@’ — 1), “.2.7
g +og' =201 —B) @ ~1)+bhig—1.
4.2.8)
The following substitutions were made in Eq. (4.2.7) and (4.2.8):
a 20 o
e (4.2.9)
The boundary conditions have the form
o=@ =g=¢g'"=0 for £=0, o =1, g1 as & s oo, (4.2.10)

Equation (4.2.7) may be solved independently of (4.2.8). When 8,=0 Eq. (4.2.7) with the boundary
conditions (4.2.10) is the Fokner-Sken equation, while (4.2.8) with the substitution g' (¢)=f (£) was treated
by Bogdanova [5]. We note that Eq. (4.2.8) is linear with respect to the function g(¢). When 8; and B,
are small we may expand the function ¢ in the form of a series

@ = @p + Pi®u + BePrg + PPt Bolre + Bibees + oo 4.2.11)
Then from Eq; (4.2.7) we have the following infinite system of equations
o’ + PP’ = 0,

Pu” + PoPu” + PuPo” = ¢% — 1,
Q1"+ @oPre” + PrePo” =@’ — 1, (4.2.12)
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with the boundary conditions

Po=Pu=0p=.= @ =0y =@, =..=0 for £=0,
@ =4, @ >0 =1 for E—, {4.2.13)

The first equation (4.2.12) is the Blasius equation for flow around a flat plate, while all the remaining
equations are linear. They may be solved by any of the standard methods on a digital computer.

Equations (4.2.8) and the function g(£) may be dealt with in the same way; as a difference, all the
resulting equations are linear.

The functions ¢ (£) and g(¢) can, of course, be expanded only in the series form in 8,, since the
first equations are the Folkner-Sken and Bogdanova equations respectively, while the remaining equations
are linear.

. U=as® Ve=br? m=ada™?. (4.3.1)

Tn this case the streamlines of the external flow are either the family of parabolas (n+d=1)

b

_ 1=(n+d)
e <+ const, (4.3.2)

or the family of logarithmic lines (with n+d=1)
z == (b/a) In z -} const. 4.3.3)
In this problem the boundary-layer fluid flow is described by the system

O LYy (n 4 )P D — n (DF—1) — (D — 1) =0, (4.3.4)
D" 4 Yy (n - 1)DD’ 4- d(D'®' — D’) = 0, @.3.5)

Equation (4,3.4) is similar to Eq. (4.2.7), while Eq. (4.3.5) is linear with respect to D. System
(4.3.4) and (4.3.5) may be solved by expanding &) and D) in a series of small parameters.

4. U= qz, V = bz, m = ad. (4.4.1)

The stream lines of the external flow are described by the family of parabolas

2 = const 222, (4.4.2)

By similarity with ordinary hydrodynamics [6] this flow form may be interpreted as the flow around
the front of a tri-axial ellipsoid in the presence of a constant magnetic field normal to the surface around
which the flow is occurring.

In this case Eq. (1.19) and (1.20) assume the form

(IJ”’-i—CD(I)”—{—EDCD"—q)’z——d(lD’-—1)+1=0, (4-4.3)
D' S(DDII — Dt L 1) + oD — d(DI - 1) = (g = b/a), (4.4_4)

A solution of (4.4.3) and (4. 4. 4) may be sought in the following form for a tri-axial ellipsoid with
b<a and d<1

D = @y + ey, + dD,, + 20y + £dDgy + D + ..., (4.4.5)
D = Do+ eDyy + dDyq + Dy; + €dDgs + D3 + ... (4.4.6)
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It then follows from (4.4.3) and (4.4.4) that:

(I)”’+(I)(IJO—CI)D’2+1~(D0 o

Dy 4 (g + D) Pyy” — 2 Dy - DDy = 0,

Dol & DDy — 2By 4 1) O - DD+ 1 = 0; (4.4.7)
Dy’ + @uDy” = 0 .,

Dy + @eDyy” -+ Dy” (Du +D0Do —Dy" +1=0,

Dgg” -+ ®yD1" — Dy’ + 1 (4.4.8)
Py= DOy =Dy = .= Oy = Dy =Dy = ... =
=Dy=Dy=Dyp=..=Dy =Dy =Dy’ = ..=0 for n = 0,
@y -1, Dy -1, @ -0, D=0 (i,j>=1) as 1N -— oo, (4.4,9)

The first equation of system (4.4.7) with the boundary conditions (4.4.9) is a Fokner-Sken equation
with 8;=1 and B8,=0 in (4.2.7). It can be solved as in [7] for example. The remaining equations of (4.4.7)
and all of (4.4.8) are linear.

5°. U= ax™, V:a(1—n——d)x”'.12, m= adz™1, (4.5.1)

The stream lines of the external flow for n+d> 1 are the family of hyperbolas

__ const .
= o, (4.5.2)

If n+d< 1, the stream lines of the external flow are the family of parabolas
x = const z1~"¢, 4.5.3)

The boundary layer in the case under consideration is described by the system

O Yy (n + HOD - (1 — n — DO — n (O1—1) — d (D' — 1) = 0, (4.5.4)
D + Yy (n+ 1)DD" - (n +d — 1) (D:z — DDy + (n — 1)O'D’ =.0, (4-5.5)

By making the substitution (4.2.6) we may reduce (4.5.4) and (4.5.5) to the form

9" 9" + (2—2B; — Beg” - Pr @2 — 1) — By (@' — 1) =0, (4.5.6)
g o 2B B —2) (g —gg)—201—BPe’g =0, (4.5.7)
p=g=¢ =g =0 for E=0, ¢ —1,g —>1 for§—>oo. (4,508)

The symbols 81 and B, have the same meaning as before [see (4.2.8)].

The system of (4.5.6) and (4.5.7) was solved numerically by Karyakin [3] for 8,=0. Here we may
also apply the method of expanding the required functions ¢(£) and g(¢)ina seriesing, and subsequently
using the results of [3], or of expanding in a series of 8; and B,.

6°., U=ax"1, V=a1+dz", m=adz™?t, 4.6.1)

This case (4.6.1) follows a similar case obtained from (4.5.1) when x and z are exchanged symmetrically.
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